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The effective-eigenvalue method is used for a calculation of the impedance of the Josephson tunneling
junction for an externally applied small-signal alternating current in the presence of noise. The accuracy
of the method is demonstrated by comparing the exact and approximate calculations. It shows clearly
that the effective-eigenvalue method yields a simple and concise analytical description of the solution of

the problem under consideration.

PACS number(s): 05.40.+j, 74.50.+r

I. INTRODUCTION

The theoretical description of the effects of thermal
fluctuations in superconducting weak links has been
developed by constructing the Fokker-Planck equation
for the distribution function of the phase by analogy with
the problem of the Brownian motion of a particle in a ti-
Ited periodic potential. The model has been applied for
both the dc and ac Josephson effects and for the driven
Josephson oscillator [1-5]. A comprehensive discussion
of the Josephson junction is given in Refs. [6] and [7] and
in the papers cited therein. As is well known, Josephson
junction devices are very sensitive to microwave,
millimeter-wave, and far-infrared signals [8]. The calcu-
lation of the response of the Josephson devices to a radio
signal is generally referred to as the problem of calculat-
ing the junction impedance [9]. A knowledge of the im-
pedance of the junction is of importance in matching the
junction to the external high-frequency current [8].

We present here exact and approximate calculations of
the Josephson junction impedance to an external small-
signal current using the Langevin equation in the zero ca-
pacitance (noninertial) limit. A Langevin equation of the
kind used for the Josephson junction problem also arises
in a number of other physical situations: quantum noise
in the ring-laser gyroscope [10—12], self-locking in a laser
[13], the laser with injected signal [14], the theory of
phase-locking techniques in radio engineering [15], etc.

The exact calculation of the linear junction impedance
based on a numerical solution of the infinite hierarchy of
the differential-difference equations obtained from the
Fokker-Planck equation has been given in Ref. [16] (see
also the discussion of these results in Ref. [17]). Another
method of exact solution of this equation for a similar
problem (ring-laser gyroscope) has been suggested by
Cresser et al. [11] in terms of an infinite continued frac-
tion (see also [6]). However, these numerical approaches
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to the problem have the disadvantage that they do not
yield a closed-form solution. Furthermore the qualitative
behavior is not at all obvious [10].

Several investigators (see, e.g., [2,17]) have attempted
to overcome this problem by deriving approximate
analytical expressions for various ranges of the junction
parameter values. However, a general equation which
would be valid for all the parameter ranges of interest has
not yet been derived.

In the present paper such an approximate solution is
obtained with the help of the effective-eigenvalue method
which is described in detail in Ref. [18]. In our context
the method constitutes a truncation procedure which al-
lows us to obtain a closed-form approximation to the
solution of the infinite hierarchy of differential-difference
equations obtained directly from the Langevin equation
without recourse to the Fokker-Planck equation. These
equations govern the time behavior of the statistical aver-
ages characterizing the dynamics of the Josephson junc-
tion in the presence of noise. We show that the effective-
eigenvalue method is a valuable and extremely powerful
tool for the purpose of obtaining a simple analytical solu-
tion for the impedance of the Josephson junction. The
solution obtained from the effective-eigenvalue method is
shown to agree closely with the exact solution for a wide
range of the bias and barrier-height parameters. This is
demonstrated by the plots of the impedance as a function
of these parameters. We remark that our method of ob-
taining the exact solution of the problem also has the
merit of being considerably simpler than the previously
available algorithm [16].

II. CURRENT BALANCE EQUATION
FOR THE JOSEPHSON JUNCTION

The Josephson tunneling junction is made up of two
superconductors separated from each other by a thin lay-
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er of oxide [7]. We label [7] ¥ and 3; the wave func-
tions for the right and left superconductors, respectively.
The phase difference ¢=¢r —¢;, where ¢, and ¢; are
the phase angles associated with the wave functions ¥z
and v, respectively, is given by the Josephson equation
[6,7]

2eV (1)
é(1)= 7 , (1)

where V(t) is the potential difference across the junction;
e is the charge on the electron; and #=h /27, where h is
the Planck constant. The junction is now modeled (Fig.
1) [6,7] by a resistor R in parallel with a capacitance C
across which is connected a dc current generator I
(representing the bias current applied to the junction).
At the other end of the junction (across the resistor R ) is
connected a phase-dependent current generator, I sing,
representing the Josephson supercurrent due to the
Cooper pairs tunneling through the junction. Since the
junction operates at temperatures above absolute zero,
there is a noise current L(¢) superimposed on the bias
current satisfying the conditions

iq, )L(t2)~M8( —1,),

L=o0. )

The overbar denotes ‘“the statistical average of,” 8(¢) is

the Dirac delta function, and ¢, and ¢, are distinct times.
The current balance equation for the junction is [6,7]

_~dV() | V()
Idc+L(t)—C———dt R ——=+Isin[¢(1)] . (3)
Substitution of Eq. (1) in Eq (3) yields
2
# - 1 #
e C¢(t)+f — ¢(t)+ lz I sin[¢(2))]
_f
= [Idc+L(t)] @

Equation (4) has the same form as that for a Brownian
particle of mass (#/2e )>*C moving in the tilted cosine po-
tential [6]

Ul)= —%(Idc¢+lcos¢) : )
This is the Langevin equation of the Josephson junction.
In general, Eq. (4) can be solved by the methods de-

scribed by Risken [6]. However, we shall consider Eq. (4)
in the diffusion (noninertial or low frequency) limit only

[lc

—

FIG. 1. Equivalent circuit of a Josephson junction.

where we can neglect the capacitative term C(¢). Thus
the Langevin equation becomes [19]
¢(t )+ 228 I sin[g(0))= 2R 1ALO]. ©®

III. REDUCTION OF THE AVERAGED
LANGEVIN EQUATION TO A SET OF
DIFFERENTIAL-DIFFERENCE EQUATIONS

In order to proceed we change the variable in the
Langevin equation (6) by means of the transformation of
the variables

ri=e "¢ (p=...,—1,0,1,...)
so that
i n =M_ n—1l(ey__n+1
dtr(t) 7 [r" 7 )—r" T (1)]
—d2enR w1 +L(1)] )

#

The multiplicative noise term r"(¢)L(¢) in Eq. (7) con-
tributes a noise-induced drift term to the average [6].
This term poses an interpretation problem in averaging
Eq. (7). We recall that, taking the Langevin equation for
a stochastic variable £(¢) as [6]

%g(t)=h(§(t),t)+g(§(t),t)L(t) (8)
with
L(H=0, L(t)L(¢t")=

and interpreting it as a Stratonovich stochastic equation
[6], we have

28(t—1t')

%= lim [l[é(t—i—r)—x]}
70| T

&(t)=x
=h(x,t)+g(x,t)%g(x,t) , ©)

where £(¢ +7), 7> 0 is a solution of Eq. (8) which at time
t has the sharp value £(¢)=x. It should be noted that the
quantity x in Eq. (9) is itself a random variable with prob-
ability density function W(x,?) defined such that
W(x,t)dx is the probability of finding x in the interval
(x,x +dx). Thus on averaging Eq. (9) over W(x,t) we
obtain

——(x)——(h(x t))+<g(x t)a 2(x, :>> (10)

where the angular braces mean the relevant quantity
averaged over W(x,t).

We may use the above results to evaluate the average
of the multiplicative noise term in Eq. (9). We have

(rMy=— i2enRr”
4 # ’
1y

2
2neR o
#

g(rn n)=__
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and
_d_ n— elnR n—1__ ,,+1_in2eR n
dtr 7 (r r ) % Iy.r
2
—KkTR? 2;” " (12)

Thus we obtain the hierarchy of differential-difference
equations for the averages

—<r">+ < 2 XL (g
=2V ((pr=y—(rntl)),  (13)
47 To
where
I
x= ;° (14)

is the ratio of bias current amplitude to supercurrent am-
plitude (this is the bias or tilt parameter),

Al

ekT

is the ratio of Josephson coupling energy to thermal ener-
gy (the barrier-height parameter), and

y= 15)

A
2e

1

*TR (16)

To=

is the characteristic relaxation time.

We remark that 7”(¢) in Eq. (7) and 7" in Egs. (12) and
(13) have different meanings, namely, r"(¢) in Eq. (7) is a
stochastic variable while in Egs. (12) and (13) »” is the
sharp (definite) value r"(¢)=r" at time ¢. (Instead of us-
ing different symbols for the two quantities we have dis-
tinguished the sharp values at time ¢ from the stochastic
variables by deleting the time argument as in Ref. [6]).
The quantity »”" above is itself a random variable which
must be averaged over an ensemble of junctions. The
symbol { ) means such an ensemble average.

Equation (13) is a well-known result [6] which may be
obtained from the relevant Fokker-Planck equation. This
equation in the noninertial limit is [1,6]

2
T

9 3¢

where W(¢,t) is the transition probability of the phase, §
is the damping coefficient defined as

A
2e

oW _ 9

ot 9

+kT , (17)

2
1

6= |2 | %

and U is the tilted cosine potential given by Eq. (5).

The distribution function W must be periodic in such a
way that it can be expanded in a Fourier series as [6]

oo

Wig,t)= 3

p=—w

a,(t)e’? . (18)

Substituting Eq. (18) into Eq. (17) and using the ortho-
gonality properties of the circular functions one can find
that the coefficients a,(¢) satisfy

d kT »? ip#il 4
@ T P e |
P—?’—g [a, ((t)—a, ()] . (19)

It can be easily shown that the a,(¢) of Eq. (18) are relat-
ed to (r?) by

ap(t)=g<e_""¢)=—217;<r") . (20)

Thus Eq. (19) coincides precisely with Eq. (13).

IV. EXACT SOLUTION FOR THE
LINEAR RESPONSE TO AN APPLIED
ALTERNATING CURRENT

We suppose that the current across the junction is now
Iy +1, exp(—iwt). We also suppose that
#l,, /2ekT <<1 so that we can make the perturbation ex-
pansion (we may use the exponential form for the ac
current since we seek only the linear response),

(r?y=(rP)o+ A,()I, exp(—iot)/I+ -+ . (21)

On substituting Eq. (21) into Eq. (13) we obtain for the
linear response to the ac current

-ia)7'0+p2+—i227—x A0)=T21d, (o)~ 4, ()]
— Y (0, (22)

with 4,(w)=0

Equation (22) can readily be solved for the homogene-
ous case, i.e., for {r? )0——0 Denoting the solution of the
homogeneous equation (22) by 7,(w) and introducing the
quantity S (@) defined as

p(a))—rp ) /7, (@), (23)

we have the continued fraction solution of the homogene-
ous equation (22), namely [6],

5, (@)= 0.5 NG

21co7'
-2 +—73+1x +0.55, (@)

vp
In particular, for p =1 we obtain

S,(0)= - 0.5 (25)
T
L 0.25
L4 v 207, 4 0.25
l1|X— -
2y 14 [ 2wy
1|1 X
3y
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It can be seen that from Eq. (24) (V)1 =Z(), e, (30)
5 (0)=5. = (rP)y (26) where Z(w) is the impedance of the junction given by
P P -1
(rr= 1o Z(w)=R[1—D, ()]
is the stationary solution of the averaged Langevin equa- i _ _
tion (13). = l—z%[S1+S’1"—Sl(a))—S’f(—a))] NER)
0

As shown in Appendix A we can now solve the inho-
mogeneous equation (22) by suqf:essively eliminating the
variables to obtain 4 ,(w) and 4 _(w) in terms of S (w)

[Egs. (A18) and (A22) respectively]. Having determined V. THE EFFECTIVE EIGENVALUES
A,(w) and A_, we can calculate { sing—{ sing),), AND THE LINEAR RESPONSE OF THE
name]y, JOSEPHSON JUNCTION
. . _ I,e "t Let us now suppose that a strong dc current I, had
('sing—('sing )¢ ) =D, (w) I ’ (27) " been applied to the junction in the infinite past and that
at t=0, I, is incremented by a small current U(?)A,
where where U(t) is the unit step function so that the total
current is I3, + U(z)A. Now we are only interested in the
D(w)= [ 1,(0)=4_(0)] response linear in A. We therefore assume that
=V (5,45t ~5(@) -5t (—w)] @8 (Fmy=Cr"eg (s (32)
4750
where the subscript 1 denotes the portion of the statisti-
and the asterisk means complex conjugate. cal average which is linear in A and the subscript eq
Furthermore, one may use Eq. (28) to evaluate the im- denotes the statistical average in the stationary state com-

pedance Z(w) of the junction. In order to accomplish puted using the stationary distribution function [6]
this we recall that the averaged current balance equation

in the presence of the ac is Wy($)=Cye ™ U($)/kT
e . V) _ ,
Ty 1, e —I( s1n¢)——R—~—O . (29) (l_e-U(¢)/kT)f¢e UIKTG g
X|1= YT » (33)
We have supposed that 0 e d¢
('sing ) =(sing )+ ( sing), , where
(V)y=(V)e+(V),, U(d)=—#[cosp+ (14, +A)p]/2e . (34)
where the subscript O on the angular braces denotes the On substituting Eq. (32) into Eq. (13) we obtain
average in the absence of the ac, and the subscript 1 the
portion of the average which is linear in I,,. Thus on 2, infi n
noting that nt 2e kT(l"lc_*_A (r")eq
n+1 n—1 —
=0 4ekT ({r" T eq=(r" "D e)=0 (35)
and using Egs. (27) and (28) we have and
|
d n 1 2 infi n\ n#l n—1 n+1 iAn#i pn
- +— = — U(e) . (36
2l o |V 2err e &y aroek T ™0 =) okT< YeaU(1) )
[
Equation (36) is a three-term recurrence relation driven namely,
by a forcing function, namely, the U(¢) term. In order to N ; A=A (38)

determine the effective eigenvalue for the quantity of in-

terest which is (), we shall consider the unforced part  The real part of A} when inverted will give the effective
of Eq. (36) at n =1 and reduce it to an eigenvalue prob- relaxation time while the imaginary part will give the fre-

lem quency of oscillation.
For any time t, Eq. (37) yields
L)+ r) = (37 Y 4y
. X
where A is the effective eigenvalue to be determined. ;ﬁ;:_ﬁt____ (39)
Since (r), is a complex variable A, is also complex, ¢ (r)
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The effective-eigenvalue method [18] suggests that Eq.
(39) may be replaced by its initial value (i.e., its value at
t =0). We therefore have

d
_ah
(r),
On substituting Eq. (36) into Eq. (40) for n =1 we obtain

Ak (40)

t=0

1 | i2¢R (r’)1 eIR
Ag=—+ I+ , t=0.
ef o % dc <">1 #
41)
Now from Eq. (32) we have
}Er:)(r">1=<r”>o—<r">eq . (42)

Equation (41) with the aid of Eq. (42) simplifies further to
(r2>eq—<r2>o
(r >eq_ ( r )0

The averages (r )., and (r?) . in Eq. (43) are over the
stationary distribution W,(¢) of Eq. (33) with the per-
turbed potential of Eq. (34). However, remembering that

we are interested only in the linear response of A we can
express (r"),,—(r")yas

(F) g (r")o=

elR
#

I+
To # de

(43)

8 n 2
A (rmo oY) . (44)

Therefore in order to determine A% from Eq. (43) we only
need to evaluate (3/3A){r ), and (3/3A){r?), as given

in Appendix B. The final result is
<r )0

i (_1)n+1<rn>3

n=1

AL =-L (45)

41,

Thus we have expressed the complex effective eigenval-
ue ALF=A"+i)"” in terms of the equilibrium averages
(r"), only. However, for numerical calculations it is
more convenient to express A in terms of the continued
fraction S,,. On using Eq. (26) we obtain after some alge-
bra

+— Y
T 4rS,(1—82{1—82[1—-S2(1 1))

(46)

We can show in the same way that the effective eigenval-
ue kef for (') is related to A} by

()\' )*—}\’*—}hl_lkll (47)

The behavior of the real (7yA’) and imaginary (7,A'")
parts of the normalized effective eigenvalue 7,A as a
function of the barrier height ¥ and bias parameters x is
illustrated in Figs. 2 and 3. As we shall see in Sec. VI,
Eq. (46) accurately represents the behavior of the fre-
quency of oscillation (Im{A}}) and the spectrum
broadening (Re{Aj}).

Having determined the effective eigenvalues A% and
Ag we may calculate the impedance of the junction as
follows.

We recall that the leading members of the hierarchy of
differential-difference equations are

|
d —1 1 ih‘ldc —1 —2 i2eR —jwt) . —1
— — —_—— — I 1w
dt<r )1+ To ’1 2ekT (r )1 4e kT To (1—L(r ) )+ — P m€ (r )() » (48)
d 1 2 l2eR _
— +— 1+ 1— iot 49
dt<r)1 e 2kT (r)= 4kT0( (r¥)— (r)ol e (49)
[
Using Egs. (26) and (40), Eq. (48) and (49) reduce to the where
ordinary differential equations of the first order g s
iyS* D,(0)=-L _— N (55)
%“_1)1"'7‘;(’*])1:2;3 I,e™ ', (50) ’ 4ro [ M —ilo+A") A —il0—A")
. Hence the impedance of the junction Z(w) defined by Eq.
i(,) FAE(r ), =— ivS, I e —iot (51) (31) is given by the simple formula
dt 1 e 1 2 m .
* Z(w)=R {1— Si 5
The steady-state solutions of Egs. (50) and (51) are (@)= 4ry | M —il0+A") + N —i(o—A1") >
iySt I e i
(rh=5 Z_ - s (52) (56)
Tolher —i0 _ where S| and A'+iA" are given by Egs. (B8) at n =1 and
(r) irS) I,e ' (53) (46), respectively.
r);=-—
! 2ro(Ak —iw) 1
Thus V1. RESULTS AND DISCUSSION
(r=h,—(r), We now compare the impedance Z(w) from the ap-
( sing—( sing),) = % proximate equation (56) with the exact solutions [Eq.
! ) (31)]. The results of the calculations are shown in Fig. 4.
=D (w)l, e /I, (54) It is apparent by inspection of this figure that Eq. (56)
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gives perfect correspondence to the exact solution for all
ranges of the bias x and barrier-height y parameters.
Thus it allows us to represent the impedance of the junc-
tion Z(w) by the simple analytic formula of Eq. (56)
which describe [20] a resonance with natural angular fre-
quency A''.

We remark that approximate equations for the im-
pedance of a form similar to the above equation have
been derived in Ref. [17] [Egs. (3.11) and (3.14)]. Howev-
er the equations have a narrower range of applicability
than ours as they are confined on the one hand [Eq.
(3.11)] to large @ and on the other hand [Eq. (3.14)] to
small fluctuations.

It is of interest to compare the results we have obtained
with those for the noiseless case. In the absence of noise
one can calculate the impedance analytically by finding
the differential impedance at the bias point [8]. The
derivation and discussion of the noiseless case is given
elsewhere [8,9,17]. In our notation the result is as fol-
lows: For values of the bias parameter x <1

Z(w) _ QOQ—i 1—x2)
R 1+0%—x?2

(57

102

(05

T T

T

-

Re(1pAef)

l()";

100 L " L " L
10! 100 10t 102

o) ;

Im(7oAef)

TEERETITTINIRRE i

10-3 N L L
10! 100 10t

Y

=
(=1
0

FIG. 2. The real (a) 7oA’ and imaginary (b) 7oA"’ parts of the
effective eigenvalue for the Josephson junction vs y. Curve 1, x
(bias current)=0.1; 2, x=0.5; 3, x=1.0; 4, x=1.5; and 5,

x=2.5.

and for x > 1

Z(o) _ Vixi—1
R (x+VxI—1)x2—1—0?)
M sa-VxI—1), (58
2Ax+Vx2—1)
where
Q=2w1y/Y . (59)

The above equations have a simple physical interpreta-
tion. If x <1 the junction behaves like an inductance

L= #i/2el
Vg
in parallel with the resistance R, yielding the admittance
Y(w)=1/R —1/iwL
which gives the impedance Z(w)=Y o) from Eq. (57)
[8]. If x > 1 the impedance is entirely real with a singu-

larity at xs=\/1+02. This singularity vanishes in the
presence of noise as is evident from Fig. 4. Such behavior
is even more pronounced in Fig. 5. There we have plot-

102 T T ™

- (a)

T S R IR

Re(70Aef)

X
102 E T T T T 3
- (b) :
1
10! E
- :
et
) [
<t i
£ 100 £ ]
g ]
= £ ]
101 E
E E
F ]
10»2 . " — "
0 0.5 1 1.5 2 2.5
X

FIG. 3. The real (a) 7oA’ and imaginary (b) 7,A” parts vs x.
Curve 1, y=1;2, y=5; 3, y=10; 4, y =20; and 5, y =50.
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ted the normalized impedance Z(w)/R as a function of
the bias parameter x and have compared it with the
noiseless case. It is apparent from Fig. 5 that for weak
noise (y=50) Egs. (57) and (58) yield a satisfactory
description of the impedance excluding the region in the
vicinity of the singular point x, =V 1+Q? However, we

remark that at moderate values of y (e.g., at ¥ =10),
there is a striking difference between the solutions with
and without noise. This is particularly apparent in Figs.
5(a) and 5(b) where close to the singular point x, the
noiseless solution (in contrast to that including noise)
possesses a negative real part which is an indication of

0.8+

g )
& I
0.6}
0.4 4
0.2t
0.88 I N 0 : .
101 100 10! 102 101 100 10! 102
THw THw
2.5 — - T - . — 0.01
of
-0.01}
~ -0.02
S 8
2 E
-0.03}
-0.04
-0.05
_0‘5 " 1 P . n n n A A1 ,0.06 n L1 aa n n PR 1 L1
100 10! 102 101 100 10! 102
Tow Tow
25 B — e
0.6 . ——
(e) (f)
2+
0.4
1.5
0.2
S g 1 1
E -
0.5 |
02}
0
0.4+
M
0.5 . . R _.»r"/r'ﬂ
0.6 — e . . . . 0o 10! 102
-1 0 1 2
10 10 Tow 10 10 Tow

FIG. 4. Comparison of the exact (solid lines) and approximate (asterisks) solutions for the real [(a) y =1, (b) ¥ =10, (c) ¥y =50] and
imaginary [(d) y=1, (e) ¥ =10, (f) ¥ =50] parts of the normalized (R =1) impedance vs 7ow. x=0.1 (curves 1), x =0.75 (curve 2),
x=1.0(curve 3), and x =1.5 (curve 4).
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amplification or oscillation which may occur if the junc-
tion is inserted in an appropriate microwave circuit [9].

VII. CONCLUSIONS

The purpose of this paper is to demonstrate how the
effective-eigenvalue method allied with the Langevin
equation may be applied with much success to the
Brownian motion in a tilted cosine potential. On apply-
ing the effective-eigenvalue technique to this model we
find that it yields a simple analytic formula, Eq. (56), for
the response of a Josephson junction to a weak ac current
which agrees closely with the exact solution. This has
the merit that we now have a simple analytic formula for
the impedance in the presence of noise, the spectrum
broadening, and the resonant frequency for all ranges of
the parameters x and ¥. The inclusion of noise has a pro-
found effect on the operation of the junction as it may re-
move [3,4] the resonance singularity of the noiseless case.
We show in addition to the derivation of these approxi-
mate formulas that the exact linear response of the
Josephson junction to a weak ac current is determined by
the continued fraction S (). This representation of the
exact solution has the advantage that it can easily be

2.5 . : —

(a)

1.5

Re(Z)

-0.5 —

Im(Z)

X

adapted for iteration in order to determine the nonlinear
response of the Josephson junction.

As we already mentioned in the introduction a
Langevin equation of the kind used in the present paper
also arises in a number of other [6] applications. There-
fore the results obtained for the Josephson junction can
also be applied to analogous systems, for example, to the
ring-laser gyroscope [10-12]. The Langevin equation for
the Josephson junction has the same mathematical form
as that of the ring-laser gyroscope with an appropriate
change of parameters. In the ring-laser gyroscope
operating at steady state the quantity of interest is the
spectrum of the beat signal (see, for example, Ref. [10]).
As we have shown in Ref. [18] the effective-eigenvalue
method when applied to the ring-laser gyroscope gives
also a good quantitative description of the main features
of the spectrum in all regions of interest [10-12].

APPENDIX A

Here we give the solution of the inhomogeneous equa-
tion (22) which governs the exact solution as follows. Let
us divide Eq. (22) by 4, () and write

2.5 v T T -

(b)

Re(Z)

Im(Z)

X

FIG. 5. Comparison of the exact (solid line), approximate (asterisks), and noiseless (dashed line) solutions for the real [(a) y =10,
(b) ¥y =50] and imaginary [(c) y =10, (d) ¥ =50] parts of the normalized impedance vs x.
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R(@)=—2"—, p>2. (A1) —iwrg+p + BYX L Y5 |5 =TP (A3
p Ap_l(a)) 14 loTyTPp 2 4 p+1 p 4 ( )
We thus have Following _the methods of Coffey [19] and Cresser et al.
[11] we write
, ipyx = = R =S 0
—leo+P2+‘22‘K—+‘EERp+1 R, R,(0)=8,(0)+Q,(®) . (A4)
Equation (A2) then becomes
. (rP)
=Y2_PY_ 0 = (A ipyx < ~ S 1A
472 4 —ioro+p?+PLE+ LIS, +0,,,1((5,+0,)
We seek a complete solution of the inhomogeneous equa- ipy (r?),
tion (A2). We can regard Eq. (A2) as having a particular = %42 T2 7 (A5)
solution and a complementary solution. The particular p-1
solution satisfies Eq. (13), i.e., Using Eq. (A3), Eq. (AS5) simplifies to
J
. ipyx | + & ~ & 7 P e ~ _
—zmo+p2+1{— AP_IQP+I4£[QP+1SP A, 40,4, (S5,1,+0,:1)]= —ﬂz”—(ﬂ’)0 : (A6)
Let us write
9,=4,-.0, .
Then
. ipyx ~ - & LA s _ 3
—iorotp?+ I g, + T2 (0, A, _\(S,+0,)+4,S, 1=~ LL(rP)g . (A7)
[
Now using Egs. (A1) and (A4) we have The complete solution of the inhomogeneous equation is
1 given by Eq. (A8), that is
e SO ~
R,=S,+Q,= i (A8B) A,=S, 4, +0,4, (A12)
»—
or
so that S
R A,_,=5,+0,)4, =4 (A9) SR A
pop—l TTp Tiep iyl et Using the expression for S, from Eq. (A3) and the expres-
We can use Eq. (A9) in Eq. (A10) to obtain sion for g, from Eq. (A11) in Eq. (A13) we finally get
YP 5 (o)—BY (ypy —YP
. ipyx ~ _ p—1\0@ 7o 9p+1
—iorotp?+ E1% g, + T2(g, 11 +4,8, 1) A,(0)=-2 2 4 . (Al19)
—ia)fo+p2+m+ﬂ§p+l
i 2 4
=—ﬂ/—(r1’>o. (A10) -
2 Using the initial conditions A,(w)=0 we can write Eq.
Solving for g, we get (A14) for p =1 as follows:
. (o) —0.5iy{r),—0.25yq,
i )= — .
—%(ﬂ’)rﬁzqﬁl ! —iwty+14+0.5iyx +0.255,(w)
9= : . (A11) ) )
. +p24 PYX L VP We can obtain an expression for g, from Eq. (All).
10To TP 2 4 "rtl Therefore

|
—0.25iy%(r?),+0.125yg,
[—iwry+1+40.5iyx +0.255,(0) ][ —ioTo+4+iyx +0.55;(0)]
= —2iS,(0){r)o+2iS(0)S,(@){r?), (A15)
N 0.25iy%q, .
[—iwry+1+0.5iyx +0.2558,(0) ][ —iwTy+4+iyx +0.55;(w)]

Il(a))=—21§1(w)<r)o+

(A16)
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Substituting for ¢5,94 and so on in Eq. (A16) we obtain

gl(w)=-21 gl(w)(r>0‘§1(w)§2(w)<r2>0+§1(a))§2(al)§3(w)(r3>0— ot (_1)n+1<rn)0 H §k(m)+ o ] s
k=1
(A17)
[
where the S, (w) are given by Eq. (24). _ iyn 5.(0)—5,(w)
On taking account of Egs. (26), Eq. (A17) becomes R, (0)= ar > (A20)
0

X[1—=8;(0)S;5(0)(1—---)]} . (A18)

Equation (A18) can further be simplified as follows.
Let us introduce a new quantity R, (w) defined as

R, (0)=58,(0)5,(0[1—R, ()]
=5, (0)5,(0)[1—5, . (&), (0)(1— --)].
(A19)

The solution of Eq. (A19) is by inspection (as may be seen

Hence on comparing Egs. (A18), (A19), and (A20) we
have

A (0)=—2iR (0)
§1(w)~51
1)

=Y

= A21
27'0 ( )

We can show in the same way that the response of
(r~1), where

(rY="Ye+d_ (o), e /T+ - -

by direct substitution) is given by
|
A_((0)=2S} (—o)ST(0)(1=85 (—w)S5(0){1—83(—w)S;0)[1—-5F(—w)SFO0)1—--)]})
St(—w)—St
SR A ol e W (A22)
27, @

where the asterisk means the complex conjugate. Equations (A18)—(A22) are very convenient for numerical calcula-

tions.

APPENDIX B

In this appendix we evaluate 3 /3A(r ), and 3/3A(r?),. On using Eq. (44) in Eq. (35), we obtain

2, in# n 9 ,on n#hl n+1 0 a1y | n+1 0 yont1y |
it g et 8) | 1Mot A=t |+ 2o 1 T e+ A= (r g (r)otag (e =0
(B1)
Thus the linear approximation in A is given by the following set of equations:
[
_ 0.5
28 4 |y (= (=0, B2 T 035
14 2 =+ix+ 035
2 3 1| a 3 ' Yt 025
n _ , .
= tix | (P ot = | (Do — ("), —+ix+
Y 0A 2 | oA 0A 4 8 ..
=2y, . B '
b 0 - (B5)

As we already know the solution of Eq. (B2) may again be
given in terms of an infinite continued fraction.

(r")o 0.5
N ey . (B4)
(r" o 2n | . 1 (7"
—+ixt+———
Y 2 (rn>0

On noting that
<ro)o:1

we obtain the well known results [6]

The other quantities {7”), with n >2 can be obtained

from the recurrence relation of Eq. (B2) by iteration, for

example,
(r*)o=1-2

< r )0 (B6)

£+ix
Y

and so on.

On substituting {7"), into Eq. (B3) and noting that it
has the same form as Eq. (18) we have the solution simi-
lar to that of Appendix A:



48 EFFECTIVE-EIGENVALUE APPROACH TO THE NONLINEAR . .. 87

8 (y__2
aa "=

where

0.5
it 20k +1) 5
4 +ix +

S =

0.25
2k+2) L

(B8)

Noting that Eq. (26) allows us to express .S, in terms of
(r")oas

(Fe=(r""1)gS,
we obtain

D (o= = = DR (]

(B9)

(B10)

(=D™rm)5 .
1

Ms

2i
I

It

n

S1(r)0_SISZ<r2>0+SlS2S3<r3)O_ et +("‘1)n_1 H Sk<r">0+ M } N
k=1

(B7)

|
The quantity 3{72),/9A can be obtained from Eq. (B3)
at n =1, where

O 2y =2y 5|2, |0
6A<r Yo I(r)o 2 y+1x aA(r)0
_ i 42
= I(r)0+ 7 y-l—tx
X[{r)a—(r)3+(r3)3—(r*)3+ - ].

(B11)

On substituting Egs. (B10) and (B11) into Eq. (38) we ob-
tain

<r>0
§ (_1)n+1<rn>(2)

n=1

)‘:l;:l—

471,

(B12)

[1] V. Ambegaokar and V. I. Halperin, Phys. Rev. Lett. 22,
1364 (1969).
[2] Yu. M. Ivanchenko and L. A. Zi’berman, Zh. Eksp. Teor.
Fiz. 55, 2395 (1968) [Sov. Phys. JETP 28, 1272 (1969)].
[3] M. J. Stephen, Phys. Rev. Lett. 21, 1629 (1968).
[4] M. J. Stephen, Phys. Rev. 182, 531 (1969).
[5] W. H. Henkels and W. W. Webb, Phys. Rev. Lett. 26, 164
(1971).
[6] H. Risken, The Fokker-Planck Equation (Springer-Verlag,
Berlin, 1984).
[7]1 G. Barone and A. Paterno, Physics and Application of the
Josephson Ejffect (Wiley-Interscience, New York, 1982).
[8] F. Auracher and T. Van Duzer, J. Appl. Phys. 44, 848
(1973).
[9]1 C. V. Stancampiano, IEEE Trans. Electron Devices 27,
1934 (1980).
[10]J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich,
and M. O. Scully, Phys. Rev. A 25,2214 (1982).
[11]J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre,
and H. Risken, Phys. Rev. A 25, 2226 (1982).

[12] J. D. Cresser, Phys. Rev. A 26, 398 (1982).

[13] H. Haken, H. Sauermann, C. Schmidt, and H. D. Voll-
mer, Z. Phys. 206, 269 (1967).

[14] W. W. Chow, M. O. Scully, and E. W. Van Stryland, Opt.
Commun. 15, 6 (1975).

[15] A. J. Viterbi, Proc. IEEE 51, 1737 (1963).

[16] K. K. Likharev and V. K. Semenov, Radiotekh. Elektron.
18, 1767 (1973).

[17] A. N. Vystavkin, V. N. Gubankov, L. S. Kuzmin, K. K.
Likharev, V. V. Migulin, and V. K. Semenov, Rev. Phys.
Appl. 9, 79 (1974).

[18] W. T. Coffey, Yu. P. Kalmykov, and E. S. Massawe, in
Modern Non-Linear Optics, edited by 1. Prigogine, S. A.
Rice, and M. W. Evans [Adv. Chem. Phys. (to be pub-
lished)].

[19] W. T. Coffey, in Dynamical Processes in Condensed Matter,
edited by M. W. Evans (Wiley-Interscience, New York,
1985), Vol. 63, p. 69.

[20] H. Frohlich, Theory of Dielectrics, 2nd ed. (Oxford Univ.
Press, Oxford, 1958).



